Deep learning-based physical-layer secret key generation (PKG) has been used to overcome the imperfect uplink/downlink channel reciprocity in frequency division duplexing (FDD) orthogonal frequency division multiplexing (OFDM) systems. However, existing efforts have focused on key generation for users in a specific environment where the training samples and test samples obey the same distribution, which is unrealistic for real world applications. This paper formulates the PKG problem in multiple environments as a learning-based problem by learning the knowledge such as data and models from known environments to generate keys quickly and efficiently in multiple new environments. Specifically, we propose deep transfer learning (DTL) and meta-learning-based channel feature mapping algorithms for key generation. The two algorithms use different training methods to pre-train the model in the known environments, and then quickly adapt and deploy the model to new environments. Simulation results show that compared with the methods without adaptation, the DTL and meta-learning algorithms both can improve the performance of generated keys. In addition, the complexity analysis shows that the meta-learning algorithm can achieve better performance than the DTL algorithm with less time, lower CPU and GPU resources.
translated by 谷歌翻译
如今,基础模型已成为人工智能中的基本基础设施之一,铺平了通往通用情报的方式。但是,现实提出了两个紧急挑战:现有的基础模型由英语社区主导;用户通常会获得有限的资源,因此不能总是使用基础模型。为了支持中文社区的发展,我们介绍了一个名为Fengshenbang的开源项目,该项目由认知计算与自然语言研究中心(CCNL)领导。我们的项目具有全面的功能,包括大型预培训模型,用户友好的API,基准,数据集等。我们将所有这些都包装在三个子项目中:风水次模型,风水框架和狂热基准。 Fengshenbang的开源路线图旨在重新评估中国预培训的大型大型模型的开源社区,促使整个中国大型模型社区的发展。我们还希望构建一个以用户为中心的开源生态系统,以允许个人访问所需的模型以匹配其计算资源。此外,我们邀请公司,大学和研究机构与我们合作建立大型开源模型的生态系统。我们希望这个项目将成为中国认知情报的基础。
translated by 谷歌翻译
This paper presents a novel intrinsic image transfer (IIT) algorithm for illumination manipulation, which creates a local image translation between two illumination surfaces. This model is built on an optimization-based framework consisting of three photo-realistic losses defined on the sub-layers factorized by an intrinsic image decomposition. We illustrate that all losses can be reduced without the necessity of taking an intrinsic image decomposition under the well-known spatial-varying illumination illumination-invariant reflectance prior knowledge. Moreover, with a series of relaxations, all of them can be directly defined on images, giving a closed-form solution for image illumination manipulation. This new paradigm differs from the prevailing Retinex-based algorithms, as it provides an implicit way to deal with the per-pixel image illumination. We finally demonstrate its versatility and benefits to the illumination-related tasks such as illumination compensation, image enhancement, and high dynamic range (HDR) image compression, and show the high-quality results on natural image datasets.
translated by 谷歌翻译
语音情感识别(SER)有许多挑战,但是主要挑战之一是每个框架都没有统一的标准。在本文中,我们提出了Speecheq,这是一个基于多尺度统一度量的统一SER任务的框架。该指标可以通过多任务学习(MTL)培训,其中包括情感状态类别(EIS)和情感强度量表(EIS)的两个情感识别任务,以及两个音素识别和性别识别的辅助任务。对于此框架,我们构建了一个普通话SER数据集-Secemeeq数据集(SEQD)。我们对普通话的公共CASIA和ESD数据集进行了实验,这些实验表明我们的方法比基线方法相对较大,分别获得8.0 \%和6.5 \%的准确性提高。关于Iemocap的其他实验,具有四个情感类别(即生气,快乐,悲伤和中性)也表明所提出的方法达到了78.16%的加权准确性(WA)的最新方法,并且准确性不体(UA) 77.47%。
translated by 谷歌翻译
We consider the problem of unsupervised domain adaptation in semantic segmentation. A key in this campaign consists in reducing the domain shift, i.e., enforcing the data distributions of the two domains to be similar. One of the common strategies is to align the marginal distribution in the feature space through adversarial learning. However, this global alignment strategy does not consider the category-level joint distribution. A possible consequence of such global movement is that some categories which are originally well aligned between the source and target may be incorrectly mapped, thus leading to worse segmentation results in target domain. To address this problem, we introduce a category-level adversarial network, aiming to enforce local semantic consistency during the trend of global alignment. Our idea is to take a close look at the category-level joint distribution and align each class with an adaptive adversarial loss. Specifically, we reduce the weight of the adversarial loss for category-level aligned features while increasing the adversarial force for those poorly aligned. In this process, we decide how well a feature is category-level aligned between source and target by a co-training approach. In two domain adaptation tasks, i.e., GTA5 → Cityscapes and SYN-THIA → Cityscapes, we validate that the proposed method matches the state of the art in segmentation accuracy.
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译